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1. Introduction

The article by Ackermann et al. (2001) presents a

detailed experimental study of normal faulting and a

thorough analysis of the size and spatial distributions of

the resulting faults. The conclusions that are drawn have

significant consequences for our understanding of the

controls on the scaling of fault systems. This discussion is

not intended to challenge the main conclusions of the work,

but rather to comment on one of the techniques used to

measure the spatial distribution of the faults and to suggest a

simple but more effective method.

In measuring the spatial distribution of the faults,

Ackermann et al. (2001) used two techniques: one technique

based on line sampling and another technique based on area

sampling in which the positions of the centroids of the fault

traces were used. This discussion deals mainly with the line

sampling technique, in which Ackermann et al. (2001) took

a series of parallel sample lines perpendicular to the faults.

The spacings between adjacent faults were then calculated

and the mean and standard deviation of the spacings were

plotted as a function of the extension of the model (Fig. 1a

and b). The standard deviation was calculated as the average

for all sample lines and was interpreted as a measure of the

regularity of the spacings. The results show a systematic

decrease in standard deviation with increase in extension

(Fig. 1b). (The increase in standard deviation with extension

shown in their summary diagram, Fig. 14A, is presumably

an error.) However, the standard deviation suffers the

drawback that it is dependent on scale, as smaller spaces

tend to be associated with smaller standard deviations.

Therefore the decrease in standard deviation with extension

is largely the result of the smaller spacing developed as

more faults enter the model and does not in itself prove an

increased regularity of the spatial distribution.

I illustrate this using a simulation in which random points

were successively generated along a line of unit length and

the spacings were calculated. This kind of mathematical

model is described as a Poisson point process. The results

(Fig. 1d to f) show a systematic decrease in the standard

deviation with an increased number of points (Fig. 1e), with

an overall form very similar to the curve for the

experimental data (Fig. 1b). That the decrease in standard

deviation occurs in a random simulation makes it clear that

such a trend does not require any regularity of the fault

spacing.

A more suitable measure of the variability of the spacing

is given by the coefficient of variation (Cox and Lewis,

1966; Gillespie et al., 1999, 2001), which is defined as

Cv ¼
r

savg

ð1Þ

where, following the notation of Ackermann et al. (2001), r

is the standard deviation of the spaces between adjacent

faults along a line sample and savg is the mean. The meaning

of Cv can be seen with reference to a Poisson point process,

which produces a negative exponential distribution of

spaces at the limit of an infinite number of points (Cox

and Lewis, 1966). The negative exponential distribution has

the property that the standard deviation is equal to the mean
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and so Cv ¼ 1.0. Hence, in the simulation in Fig. 1d to f, the

mean and the standard deviation decrease together and after

a period of instability at low numbers of spaces, the Cv tends

to a value of 1.0.

Clustered faults have spacings which are more variable

than random, and so Cv . 1.0, whereas more regular (or

anticlustered) faults have Cv , 1.0. Saturated fault systems

are therefore characterised by Cv , 1.0. A perfectly regular

set of faults will have standard deviation of zero and so

Cv ¼ 0. The Cv is therefore a statistic that can describe the

full range of spatial distribution from anticlustering to

clustering.

The data from Ackermann et al. (2001) were replotted as

a graph of Cv vs. extension (Fig. 1c). After a period of

instability at strains of less than 15%, the Cv values settle

down to values of less than 1, indicating anticlustering. In

the case of the thin model, the Cv decreases to a final value

of 0.5. In the case of the thick model the Cv appears to

stabilise at a value of 0.8.

2. Sources of error

Before discussing the results further, the sources of

error and bias in the measurement of Cv will be

discussed.

2.1. Sample size

As explained above the Cv tends to 1 in a Poisson process

when there is an infinite number of points. However, when

there is a finite number of points, the frequency distribution

tends to a beta distribution with

savg ¼
L

N
ð2Þ

r2 ¼ L2 N 2 1

N2ðN þ 1Þ
ð3Þ

(Borgos 1997) where L is the sample line length and N is the

number of spaces in the sample. Hence the Cv for a Poisson

point process with a finite number of points is given by

Cv ¼

ffiffiffiffiffiffiffiffiffi
N 2 1

N þ 1

s
ð4Þ

Therefore, in order that the Cv of a Poisson point process

should tend to a value of 1.0, a modified version of the Cv

should be calculated:

Cp
v ¼

r

savg

ffiffiffiffiffiffiffiffiffi
N þ 1

N 2 1

r
ð5Þ

In practice this causes only a minor change in the

estimated Cv and the modification is only required for small

samples.

Fig. 1. (a) and (b) Re-digitised results of Ackermann et al. (2001) showing the development of the average spacing, savg and standard deviation, r, of spacing of

the faults along line samples of the thick and the thin models. (c) Calculated coefficient of variation, Cv for the same data. (d)–(f) Results of a single simulation

of the Poisson point process as a function of the number of spaces, N. Cp
v is the adjusted coefficient of variation (see text for details).
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2.2. Statistical uncertainty

The question that arises is: are the faults in the models

significantly anticlustered, i.e. are they significantly more

anticlustered than a random sample? Confidence limits are

therefore needed. These have been calculated here by

multiple simulations of random samples (so-called Monte

Carlo simulations).

Cp
v was calculated for 100,000 repeated simulations of

the Poisson point process and the 5th and 95th percentiles of

the probability density function were calculated. This was

repeated for a series of different numbers of spaces, from 10

to 100 (Fig. 2). As the number of spaces increases, the 5th

and 95th percentiles converge slowly towards a value of

unity.

The percentiles can be used as confidence limits in the

following way: if a sample of size N has a Cv that is greater

than the 95th percentile for N then we can say that the

sample is significantly more clustered than a random sample

at the 95% confidence interval. Similarly, if the Cv is less

than the value of the 5th percentile then we can say with

95% confidence that it is significantly more anticlustered

than a random sample. Values of the calculated confidence

limits are also given in Table 1.

As the number of spaces in the samples of Ackermann

et al. (2001) is not known it is not possible to determine here

whether the calculated Cv values are statistically significant.

However, as long as there were more than 40 faults in the

samples then Cv ¼ 0.8 found in the thick model is

significantly anticlustered. In the thin model, the final

value of Cv ¼ 0.5 demonstrates significant anticlustering

even if N is as low as 10.

2.3. Multiple line samples

In the method of Ackermann et al. (2001), multiple

parallel sample lines were used through the data rather than

a single line. This method has the advantage of increasing

the sample number but it can also introduce bias in the

sample. If the sample lines are closely spaced, then multiple

sample lines can intersect the same pair of neighbouring

faults and so the same spacing is counted multiple times.

This oversampling will tend to bias Cv. In order to minimise

the effect, the sample lines should not be closer than the

maximum length of the faults. In the case of Ackermann

et al. (2001), the distance between the sample lines was not

stated.

2.4. Data resolution

In any dataset there will be a spatial resolution below

which the spacings cannot be measured. This introduces a

bias that tends to increase the regularity of the sample and

cause a lowering of Cv. Ackermann et al. (2001) scanned

their models at 4000 dpi and so the effect of this bias should

be minimal.

3. Discussion

Given that the data of Ackermann et al. (2001) are not

badly affected by the sampling biases discussed above and

that the sample sizes were adequate, the plots of Cv (Fig. 1c)

indicate that anticlustering is developed in the models and

that the thin model contains faults that are more anti-

clustered than the thick model. The development of

anticlustering implies a repulsive mechanism such as stress

shadowing. It happens that Ackermann et al. (2001) came to

the same conclusions despite using an inappropriate

technique.

The Cv has already been used in analysis of the spatial

distributions of line samples through opening mode

fractures, i.e. joints and veins (Gillespie et al., 1999,

2001). It has been shown that when the fractures are

confined to mechanical units (stratabound) they are

characterised by Cv , 1 and so are anticlustered. However,

when the fractures are non-stratabound they are typically

clustered and Cv . 1. This is in concurrence with

Ackermann et al. (2001), who describe faults rather than

Fig. 2. Confidence intervals for the adjusted coefficient of variation, Cp
v , for

different numbers of faults, N, calculated from the 5th and 95th percentiles

of a Monte Carlo simulation. Samples falling outside the confidence

intervals are clustered or anticlustered at the 95% confidence interval.

Table 1

Confidence limits for the adjusted coefficient of variation. N is the number

of spaces in the sample, c5 and c95 are the 5th and 95th percentiles,

corresponding to 95% confidence limits (cf. Fig. 2)

N c5 c95

10 0.650 1.496

20 0.728 1.356

30 0.769 1.302

40 0.793 1.262

50 0.812 1.237

60 0.824 1.217

70 0.835 1.201

80 0.844 1.190

90 0.852 1.179

100 0.858 1.170
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opening mode fractures, but also recognise the importance

of the layer thickness in controlling the spatial distribution

of fractures.

Ackermann et al. (2001) use the nearest neighbour

statistic, V, to analyse area samples of the experimental

faulting. This clustering index is comparable with the Cv for

line samples, although in the case of V, 0 is the most

clustered value and values greater than 1 are anticlustered.

Ackermann et al. (2001) found that at greater than 16%

extension, V was less than 1 in both the thick and the thin

models, indicating either a random spatial distribution or

clustering of the faults. A statistical test is needed to

determine whether or not the clustering is significant (e.g.

Davis, 1973). It is difficult to resolve this result for the area

sample with the anticlustering determined for the line

samples. Ackermann et al. (2001) recognised that there was

anticlustering in the direction perpendicular to the faults and

that this can be attributed to stress reduction shadows either

side of the faults. Taking this one step further, it may be that

the faults are anticlustering in the direction perpendicular to

the faults, but clustering along strike as a result of high stress

concentrations at the lateral tips of the faults. In order to test

for this anisotropic spatial distribution, the nearest neigh-

bour vectors could be plotted on a polar plot.

4. Conclusions

In the analysis of spatial distributions of faults along line

samples by Ackermann et al. (2001), an inappropriate

statistic was used. The Cv is shown to be a more meaningful

statistic, which is able to distinguish between clustered,

random, anticlustered and regular fault spacings. As this

technique is effective and simple to calculate, it can be used

routinely for analysis of fractures and it may help to improve

our description and understanding of the processes of

fracture saturation and clustering.
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